If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(4x)^2=68
We move all terms to the left:
x^2+(4x)^2-(68)=0
We add all the numbers together, and all the variables
5x^2-68=0
a = 5; b = 0; c = -68;
Δ = b2-4ac
Δ = 02-4·5·(-68)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{85}}{2*5}=\frac{0-4\sqrt{85}}{10} =-\frac{4\sqrt{85}}{10} =-\frac{2\sqrt{85}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{85}}{2*5}=\frac{0+4\sqrt{85}}{10} =\frac{4\sqrt{85}}{10} =\frac{2\sqrt{85}}{5} $
| (5+3x2÷6−4)x(4÷2−3+6)÷(7−8÷2−2)2=(5+3x2÷6−4)x(4÷2−3+6)÷(7−8÷2−2)2= | | 7(9x+7)-2(x-x-2)=36 | | 9x+7/2-(x-x-2/7)=36 | | 5=2x=2x=6 | | 3x=6=51 | | a*3+5=13 | | A^x-3=455 | | 1/5x+1=2/3x-4/3 | | 2/3x+5/6x=1/2 | | X/4+3x/2=6 | | 10+3y/4=13 | | f(4)=1/3 | | 50.75r+57.95r=6,000 | | 3/2x+1/3=1/4x-1/6 | | $=x-3x/25 | | 200+3m=7m | | 4x.8=3x-9 | | -15-13=8y+13 | | x-3x/25=22x | | (9x/16)^2+x^2=139^2 | | (9x/16)^2+x^2=140^2 | | x+5/100*x=252 | | x+5/100x=252 | | x+45=2x+17 | | 1/2k+13=9 | | 7•x-15=34 | | x+5/100=252 | | (x^2/6)-(8x/7)=-(6/7) | | 7.4(x-3)=-5(6-2x) | | 7=3+h6 | | r/3-13=10 | | 9x-20°=6x+5° |